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Abstract In this paper, by using a generalization of Ostrowski’ and Chun’s meth-
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1 Introduction

Solving nonlinear equations and systems is an important task in theory and practice,
not only for Applied Mathematics, but also for many branches of Science and Engi-
neering. A glance at the survey [1] and the references therein show a high level of
contemporary interest. In case of problems coming from Chemistry, nonlinear equa-
tions regularly appear: in the reaction–diffusion equations that arise in autocatalytic
chemical reactions (see [2]), iterative methods can be applied; also in the analysis
of electronic structure of the hydrogen atom inside strong magnetic fields (see [3]).
Moreover, numerical performance of some chemical problems allows us to check the
models of observable phenomena [4]. Even more, many problems from Chemistry
consist in finding chemical potentials that are basic for studying other thermodynamic
properties: the modeling of such potential leads to nonlinear integral equations that
can be reduced to a set of nonlinear algebraic equations (see [5] and [6] for example).

Let us consider the problem of finding a simple zero of the nonlinear function
f : I ⊂ R → R, that is, a solution ξ ∈ I of the nonlinear equation f (x) = 0. The
most used iterative techniques to determine these roots can be classified as: (a) methods
that require only functional evaluations of f , and (b) schemes whose formula require
evaluations of the function and its derivatives. There are two simple and effective
known methods that represent these classes: Steffensen’s scheme [7]

xk+1 = xk − f (xk)

f [ωk, xk] , (1)

where ωk = xk + f (xk) and f [ωk, xk] = f (ωk) − f (xk)

ωk − xk
, and Newton’s procedure

(see [8])

xk+1 = xk − f (xk)

f ′(xk)
, (2)

where f ′(x) is the first derivative of function f (x). The order of convergence of both
methods is two.

Multipoint methods have been developed as a result of the search for iterative meth-
ods to solve nonlinear equations with fast convergence and small number of operations
or functional assessments per iteration. The most important class of multistep schemes
are the optimal methods in the sense of Kung–Traub conjecture [9].

The problem of solving a system of nonlinear equations is avoided as far as possible.
Generally, the nonlinear system is approximated by a system of linear equations. When
this is not satisfactory, the problem must be confronted directly. The direct way is to
adapt the methods designed for the scalar case to several variables. A scalar variable is
replaced by a vector incorporating all the variables. Hence arises the greatest difficulty
to get new iterative methods for nonlinear systems, since not always the methods of
nonlinear equations are extensible to systems directly.

Recently, the weight-function procedure has been used, with some restrictions, in
the development of high order iterative methods for systems: see, for example the
papers of Sharma et al. [10,11] and Abad et al. [12], where the authors apply the
designed method to the software improvement of the Global Positioning System.
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On the other hand, a common way to generate new schemes is the direct compo-
sition of known methods with a later treatment to reduce the number of functional
evaluations (see [13–16], for example). A variant of this technique is the so called
Pseudocomposition, introduced in [17,18].

The aim of this work is to design new parametric families of iterative methods for
nonlinear equations by using some of the known methods and subsequently extend one
of them to systems of nonlinear equations. For this purpose we have used Ostrowski’
[19] and Chun’s [20] methods with iterative schemes

xk+1 = yk − f (xk)

f (xk) − 2 f (yk)

f (yk)

f ′(xk)
, (3)

xk+1 = yk − f (xk) + 2 f (yk)

f (xk)

f (yk)

f ′(xk)
, (4)

respectively, where yk is the step of Newton’s method. These methods will be denoted
by OM1 and CM1, respectively.

The paper is organized as follows: we start in Sect. 2 with the design of the families
of iterative methods for nonlinear equations, with and without derivatives. Section 3
is devoted to the extension of the obtained family with derivatives to systems of
nonlinear equations by using the divided difference operator. By means of standard
test functions and the problem of molecular interaction, in Sect. 4, we confirm the
theoretical results. We finalize the paper with some concluding remarks in Sect. 5.

2 Design of the families for nonlinear equations

We propose a new family as a generalization of Ostrowski’ and Chun’s methods in
the form:

yk = xk − α
f (xk)

f ′(xk)
,

xk+1 = yk −
[

f (xk)

a1 f (xk) + a2 f (yk)
+ b1 f (xk) + b2 f (yk)

f (xk)

]
f (yk)

f ′(xk)
, (5)

where α, a1, a2, b1 and b2 are real parameters. In the following result we show which
values of the parameters are necessary to guarantee the order of convergence is at least
4.

Theorem 1 Let f : I ⊆ R → R be a sufficiently differentiable function in an open
interval I , such that ξ ∈ I is a simple solution of the nonlinear equation f (x) = 0.
Then, the sequence {xk}k≥0 obtained by using expression (5) converges to ξ with local
order of convergence at least four if α = 1, a2 = a2

1(b2 − 2), b1 = 1 − 1
a1

and for all
a1 and b2 ∈ R with a1 �= 0. Then, the error equation is

ek+1 =
((

5 − a1
(
b2 − 2

)2)
c3

2 − c2c3

)
e4

k + O[
e5

k

]
,
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where ek = xk − ξ and cq =
(

1

q!
)

f (q)(ξ)
f ′(ξ)

, q ≥ 2.

Proof To prove the local convergence of our iterative process to the solution of f (x) =
0 we use the Taylor series expansion of the functions involved around the solution

f (xk) = f ′(ξ)
[
ek + c2e2

k + c3e3
k + c4e4

k

] + O[
e5

k

]
(6)

f ′(xk) = f ′(ξ)
[
1 + 2c2ek + 3c3e2

k + 4c4e3
k + 5c5e4

k

] + O[
e5

k

]
. (7)

By direct division of (6) and (7) and substituting the obtained result in the first step of
the proposed iterative method (5) we obtain:

yk = ξ − (1 − α)ek + αc2e2
k − 2α

(
c2

2 − c3
)
e3

k − α
( − 4c3

2 + 7c2c3 − 3c4
)
e4

k + O[
e5

k

]
.

By using again the Taylor series expansion we obtain:

f (yk) = A1ek + A2e2
k + A3e3

k + A4e4
k + O[

ek
]5

,

where A1 = 1−α, A2 = (
1 − α + α2

)
c2, A3 = −2α2c2

2 +(
1−α+3α2 −α3

)
c3 and

A4 = (
1 − α + 6α2 − 4α3 + α4

)
c4 + 5α2c3

2 − α2(10 − 3α)c2c3. Hence, substituting
f (xk), f ′(xk) and f (yk) in (5) we obtain the following error equation for the new
family:

ek+1 = B1ek + B2e2
k + B3e3

k + B4e4
k + O[

e5
k

]
,

where B1 = (1 −α)
(
1 − b1 − b2 + b2α − 1

a1 + a2 − a2α

)
. If α = 1 then B1 = 0 and

the error equation for the iterative method (5) takes the form:

ek+1 = B ′
2e2

k + B ′
3e3

k + B ′
4e4

k + O[
e5

k

]
,

where B ′
2 = (

1− 1

a1
−b1

)
c2. In this case, if b1 = a1 − 1

a1
, then B ′

2 = 0 and we obtain

for the error equation the following expression:

ek+1 = B ′′
3 e3

k + B ′′
4 e4

k + O[
e5

k

]
,

where B ′′
3 =

(
a2 − a2

1(−2 + b2)
)

c2
2

a2
1

. We see that if a2 = a2
1(b2 − 2), then B ′′

3 = 0

and
ek+1 =

(
5 − a1(b2 − 2)2)c3

2 − c2c3

)
e4

k + O[
e5

k

]
, (8)

so the order of convergence is at least four. 	
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Therefore, we obtain the following iterative formula for the bi-parametric family

yk = xk − f (xk)

f ′(xk)
,

xk+1 = yk − 1

a1

[
f (xk)

f (xk)+a1(b2 − 2) f (yk)
+ (a1 − 1) f (xk)+a1b2 f (yk)

f (xk)

]
f (yk)

f ′(xk)
,

(9)

We present some particular cases of (9):

1. If b2 = 2, the parameter a1 disappears and the resulting scheme is Chun’s method.
2. When a1 = 1, the iterative formula takes the form:

xk+1 = yk −
[

f (xk)

f (xk) + (b2 − 2) f (yk)
+ b2 f (yk)

f (xk)

]
f (yk)

f ′(xk)

and we have a one parametric family including the original methods as particular
cases: (a) if b2 = 2, as we have said, we have Chun’s method (4) and (b) if b2 = 0,
we get Ostrowski’s scheme (3).

3. For any a1 �= 0 and b2 = 0, the iterative formula is:

xk+1 = yk − f (xk) − 2(a1 − 1) f (yk)

f (xk) − 2a1 f (yk)

f (yk)

f ′(xk)
.

If we denote −2(a1 − 1) = β, then −2a1 = β − 2 and we get King’s family [21]

xk+1 = yk − f (xk) + β f (yk)

f (xk) + (β − 2) f (yk)

f (yk)

f ′(xk)
.

4. For any a1 �= 0 and b2 = 1, the iterative formula takes the form:

xk+1 = yk − 1

a1

[
f (xk)

f (xk) − a1 f (yk)
+ (a1 − 1) f (xk) + a1 f (yk)

f (xk)

]
f (yk)

f ′(xk)
.

At this point, can we get a similar family by approximating the derivatives by
divided differences and preserving the order of convergence? The answer is given in
the following result, where a technique describe in [22].

Theorem 2 Let f : I ⊆ R → R be a sufficiently differentiable function in an open
interval I , such that ξ ∈ I is a simple solution of the nonlinear equation f (x) = 0.
Then, the sequence {xk}k≥0 obtained by using the expression

yk = xk − α
f (xk)

f [zk, xk] ,

xk+1 = yk −
[

f (xk)

a1 f (xk) + a2 f (yk)
+ b1 f (xk) + b2 f (yk)

f (xk)

]
f (yk)

f [zk, xk] , (10)
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where zk = xk + f (xk)
2 and f [zk, xk] = f (zk) − f (xk)

zk − xk
, converges to ξ with order

of convergence at least four if α = 1, a2 = a2
1(b2 − 2), b1 = 1 − 1

a1
and for all a1

and b2 ∈ R, with a1 �= 0. The error equation is

ek+1 =
((

5 − a1(−2 + b2)
2)c3

2 − c2c3 + γ c2
2

)
e4

k + O[
e5

k

]
,

where ek = xk − ξ , γ = f ′(ξ)2 and cq =
(

1

q!
)

f (q)(ξ)
f ′(ξ)

, q ≥ 2.

Proof By using the Taylor series expansion of the function f (xk) around ξ (6), we
obtain the following expressions:

zk = ek + γ
[
e2

k + 2c2e3
k + (c2

2 + 2c3)e
4
k + 2(c2c3 + c4)e

5
k

+(
c2

3 + 2c2c4 + 2c5
)
e6

k

] + O[
e7

k

]
,

f (zk) = f ′(ξ)[ek + (c2 + γ )e2
k + (c3 + 4γ c2)e

3
k + c4 + γ (5c2

2 + 5c3 + γ c2)e
4
k

+(c5 + γ (2c3
2 + 12c2c3 + 6c4 + γ (4c2

2 + 3c3)))e
5
k ] + O[

e6
k

]
,

f [zk, xk] = f ′(ξ)[1 + 2c2ek + (c3 + 4γ c2)e
3
k + (4c4 + γ (2c2

2 + 3c3))e
3
k ] + O[e4

k ].

Hence, substituting these expressions in (10), we obtain the following result for yk :

yk = (1−α)ek +α
(
2c3−2c2

2+γ c2
)
e2

k +α
(
4c3

2−7c2c3−γ c2
2+3c4+3γ c3

)
e4

k +O[
e5

k

]
.

By using the Taylor series expansion again, we obtain the following expression:

f (yk) = A1ek + A2e2
k + A3e3

k + A4e4
k + O[

e5
k

]
,

where A1 = 1−α, A2 = (1−α+α2)c2, A3 = α(γ −2αc2)c2 +(1−α+3α2 −α3)c3
and A4 = (1−α+6α2−4α3+α4)c4+α(3γ c3+γ (1−2α)c2

2+5αc3
2+α(3α−10)c2c3).

Through these results we get the following error equation for the iterative scheme (10):

ek+1 = B1ek + B2e2
k + B3e3

k + B4e4
k + O[

e5
k

]
,

where B1 = (1 − α)

(
1 − b1 − b2 + b2α − 1

a1 + a2 − a2α

)
.

If α = 1, then B1 = 0 and the error equation takes the form:

ek+1 = B ′
2e2

k + B ′
3e3

k + B ′
4e4

k + O[
e5

k

]
,

where B ′
2 =

(
1 − 1

a1
− b1

)
c2. In this case, if b1 = a1 − 1

a1
, B ′

2 = 0 and we obtain

for the error equation the following expression:

ek+1 = B ′′
3 e3

k + B ′′
4 e4

k + O[
e5

k

]
,
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where B ′′
3 =

(
a2 − a2

1(−2 + b2)
)

c2
2

a2
1

. We see that if a2 = a2
1(b2 − 2), then B ′′

3 = 0

and
ek+1 = ((

5 − a1(−2 + b2)
2)c3

2 − c2c3 + γ c2
2

)
e4

k + O[
e5

k

]
, (11)

so the order of convergence is at least four. 	

Then, we obtain the following iterative formula for the bi-parametric family

yk = xk − f (xk)

f [zk, xk] ,

xk+1 = yk − 1

a1

[
f (xk)

f (xk)+a1(b2−2) f (yk)
+ (a1−1) f (xk)+a1b2 f (yk)

f (xk)

]
f (yk)

f [zk, xk] ,
(12)

and we define the following particular cases of the (12):

1. If b2 = 2, then parameter a1 is canceled in the iterative expression, that corresponds
to the derivative-free Chun’s scheme (CM2).

2. When a1 = 1, the iterative formula takes the form:

xk+1 = yk −
[

f (xk)

f (xk) + (b2 − 2) f (yk)
+ b2 f (yk)

f (xk)

]
f (yk)

f [zk, xk]
and we have a one parametric family that includes the derivative-free versions of
original schemes: (a) if b2 = 2, we have derivative-free Chun’s method, whose
iterative expression is

xk+1 = yk − f (xk) + 2 f (xk)

f (xk)

f (yk)

f [zk, xk] ,

and (b) if b2 = 0, we obtain derivative-free Ostrowski’s method (OM2), with the
iterative expression

xk+1 = yk − f (xk)

f (xk) − 2 f (xk)

f (yk)

f [zk, xk] .

3. When a1 �= 0 and b2 = 0, the iterative formula takes the form:

xk+1 = yk − f (xk) − 2(a1 − 1) f (yk)

f (xk) − 2a1 f (yk)

f (yk)

f [zk, xk].
If we denote −2(a1 − 1) = β, then −2a1 = β − 2 and we get the derivative-free
King’s family

xk+1 = yk − f (xk) + β f (yk)

f (xk) + (β − 2) f (yk)

f (yk)

f [zk, xk] .
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4. When a1 �= 0 and b2 = 1, the resulting iterative formula is:

xk+1 = yk − 1

a1

[
f (xk)

f (xk) − a1 f (yk)
+ (a1 − 1) f (xk) + a1 f (yk)

f (xk)

]
f (yk)

f [zk, xk] .

3 Extension to systems of nonlinear equations

The objective of this section is to give a generalization to several variables of one of
the families obtained in Sect. 2, preserving the local order of convergence. In order to
get this aim, we are going to use the divided difference operator.

Let us consider a sufficiently differentiable function F : � ⊆ R
n → R

n in a convex
set � ⊂ R

n and let ξ ∈ � be a solution of the nonlinear system F(x) = 0. The divided
difference operator of F on R

n is a mapping [·, ·; F] : �×� ⊂ R
n ×R

n −→ L(Rn)

(see [8]) such that

[x, y; F](x − y) = F(x) − F(y), for any x, y ∈ �.

In the proof of the following result, we will use the Genochi-Hermite formula (see
[8])

[x, y; F] =
∫ 1

0
F ′(x + t (x − y))dt,

for all (x, y) ∈ R
n × R

n .
The extension to multivariate case of family (5) requires to rewrite the iterative

expression in such a way that no functional evaluation of the nonlinear function remain
at the denominator, as they will become vectors in the multivariate case. To get this
aim, let us consider that, being the first step of the iterative process yk = xk −α

f (xk)
f ′(xk )

,

f (xk) can be expressed as f (xk) = 1
α
(xk − yk) f ′(xk). By using this, we can rewrite

the quotient f (yk )
f (xk )

as

f (yk)

f (xk)
= 1 − α

f [xk, yk]
f ′(xk)

.

By using this transformation, the proposed family (5) is fully extensible to several
variables,

y(k+1) = x (k) − α
[
F ′(x (k)

)]−1
F

(
x (k)

)
x (k+1) = y(k) −

(
G1

(
x (k), y(k)

) + G2(x (k), y(k)
) [

F ′(x (k)
)]−1

F
(
y(k)

)
,

G1(x (k), y(k)) =
[(

a1 + a2
)
I − αa2

[
F ′(x (k)

)]−1[
x (k), y(k); F

]]−1
,

G2(x (k), y(k)) = (
b1 + b2

)
I − αb2

[
F ′(x (k)

)]−1[
x (k), y(k); F

]
, (13)
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where

G1
(
x (k), y(k)

) =
[
(a1 + a2)I − αa2

[
F ′(x (k)

)]−1[
x (k), y(k); F

]]−1
,

G2
(
x (k), y(k)

) = (
b1 + b2

)
I − αb2

[
F ′(x (k)

)]−1[
x (k), y(k); F

]
,

and [x (k), y(k); F] denotes the divided difference operator of F on x (k) and y(k),
identity matrix is denoted by I and F ′(x (k)

)
is the Jacobian matrix of the system. In

the proof of the following result we are going to use the notation introduced in [23].

Theorem 3 Let F :� ⊆ R
n → R

n be a sufficiently differentiable function in a convex
set � and ξ ∈ � be a solution of F(x) = 0. Let us suppose that F ′(x) is continuous and
nonsingular at ξ . Then, the sequence {x (k)}k≥0 obtained by using the iterative scheme
(13), converges to ξ with order of convergence at least four if α = 1, a2 = a2

1(b2 −2),
b1 = 1 − 1

a1
and for all a1 and b2 ∈ R with a1 �= 0. The error equation is

ek+1 = −[(
a1(b2 − 2)2 − 5

)
C3

2 + C2C3
]
e4

k + O[
e5

k

]
,

where ek = x (k) − ξ and Cq =
(

1

q!
)

[ f ′(ξ)]−1 F (q)(ξ), q ≥ 2.

Proof By using Taylor expansion around ξ , we obtain:

F
(
x (k)

) = F ′(ξ)
(
ek + C2e2

k + C3e3
k + C4e4

k

) + O[
e5

k

]
,

F ′(x (k)
) = F ′(ξ)

(
I + 2C2ek + 3C3e2

k + 4C4e3
k

) + O[
e4

k

]
.

Let us consider

[
F ′(x (k)

)]−1 = (
I + X2ek + X3e2

k + X4e3
k

)[F ′(ξ)]−1 + O(
e4

k

)
.

Forcing
[
F ′(x (k)

)]−1
F ′(x (k)

) = I , we get X2 = −2C2, X3 = 2C2
2 − 3C3 and

X4 = −4C4 + 6C3C2 − 4C2
2 + 6C2C3. These expressions allow us to obtain

y(k) = x (k) − α
[
F ′(x (k)

)]−1
F

(
x (k)

)
= ξ + (1 − α)e(k) − α

(
A2e2

k + A3e3
k + A4e4

k

) + O[
e5

k

]
, (14)

where A2 = −C2−X2, A3 = −C3−C2 X2−X3 and A4 = −C4−C3 X2−C2 X3+X4.
By using (14) and the Taylor series expansion around ξ we obtain

F
(
y(k)

) = F ′(ξ)
(
B1ek + B2e2

k + B3e3
k + B4e4

k

) + O[
e5

k

]
,

where B1 = β, B2 = (α + β2)C2, B3 = −αA3 + 2αβC2 A3 + 3αβ2C3C2 + β4C4,
B4 = −αA4 + α2C3

2 − 2αβC2 A3 + 3αβ2C3C − 2 + β4C4 and β = 1 − α. We
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calculate the Taylor expansion of [x (k), y(k); F] by using (14),

[x (k), y(k); F] = F ′(ξ)
[

I + D2ek + D3e2
k + D4e3

k

]
+ O[

e4
k

]
,

where D2 = (2 − α)C2, D3 = αC2
2 + (3 − 3α + α2)C3 and D4 = 2αC2C3 + α(3 −

2α)C3C2 − (4 − 6α + 4α2 − α3)C4. Then,

M = (a1 + a2)I − αa2
[
F ′(x (k)

)]−1[x (k), y(k); F]
= a1 + E2ek + E3e2

k + E4e3
k + O[

e4
k

]
,

where E2 = αa2C2, E3 = αC3
2 + α(α − 3)C3 and E4 = 6αC2C3 − 2αC3

2 − 4C4 +
5α(2 − α)C3C2 + (4 − 6α + 4α2 − α3)C3C4. So, we obtain G1(x (k), y(k)) as the
inverse of matrix M :

G1
(
x (k), y(k)

) = I + Y2ek + Y3e2
k + Y4e3

k + O[
e4

k

]
,

where Y2 = αa2

a1
C2, Y3 = αa2

a2
1

[(αa2−3)C2
2 +(α−3)C3, Y4 = αa2

a3
1

[(8a1+3αa1a2+
3αa2 − α2a2

2)C3
2 ] and

G2
(
x (k), y(k)

) = b1 + F2ek + F3e2
k + F4e3

k + F5e4
k + O[

e5
k

]
,

where F2 = αb2C2, F3 = −αb2[3C2
2 − (α−3)C3] and F4 = b2[α(6−4α+α2)C4 −

6α(2 − α)C3C2 + 4(α + 1)C3
2 − 6(α + 1)C2C3].

Thus, we obtain the error equation of the proposed method

ek+1 = H1ek + H2e2
k + H3e3

k + H4e4
k + O[

e5
k

]
,

where H1 = 1

a1
(1+a1(b1 −1))(α −1). If α = 1, then H1 = 0 and the error equation

takes the form:

ek+1 = H ′
2e2

k + H ′
3e2

k + H ′
4e4

k + O[
e5

k

]
,

where H ′
1 = − 1

a1
(1 + a1(b1 − 1))C2. We note that if b1 = a1 − 1

a1
, then H ′

2 = 0. We

introduce this value of b1 and obtain the new form of the error equation

ek+1 = H ′′′
3 e3

k + H ′′′
4 e4

k + O[
e5

k

]
,

where H ′′′
3 = a2 − a2

1(b2 − 2)

a2
1

C2
2 . Finally, if a2 = a2

1(b2 − 2), the error equation is:

ek+1 = −[(
a1

(
b2 − 2

)2 − 5
)
C3

2 + C2C3
]
e4

k + O[
e5

k

]
(15)
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and this shows that the proposed method has order of convergence at least four. 	

Under the assumptions made in the previous result, the iterative scheme of the

bi-parametric family (13) takes the form:

y(k) = x (k) − [
F ′(x (k)

)]−1
F

(
x (k)

)
,

x (k+1) = y(k) − G
(
x (k), y(k)

)[
F ′(x (k)

)]−1
F

(
y(k)

)
,

G(x (k), y(k)) = 1

a1

[(
1 + a1b2 − 2a1

)
I − a1(b2 − 2)

[
F ′(x (k)

)]−1[
x (k), y(k); F

]]−1

+ 1

a1

((
a1 + a1b2 − 1

)
I − b2

[
F ′(x (k)

)]−1[
x (k), y(k); F

])
. (16)

In the following we propose some particular cases:

1. As in the scalar case, if b2 = 2,

G
(
x (k), y(k)

) = 3I − 2
[
F ′(x (k)

)]−1[
x (k), y(k); F

]

and the resulting scheme is the extended Chun’s method for nonlinear systems
(CM3).

2. When a1 = 1,

G
(
x (k), y(k)

) = [
(b2 − 1)I − (b2 − 2)

[
F ′(x (k)

)]−1[
x (k), y(k); F

]]−1

+b2 I − b2
[
F ′(x (k)

)]−1[
x (k), y(k); F

]

and we have a parametric family. Some particular cases of this class are the fol-
lowing:
(a) If b2 = 2, we have Chun’s method transferred to systems

x (k+1) = y(k) −
(

I − 2
[
F ′(x (k)

)]−1[
x (k), y(k); F

]) [
F ′(x (k)

)]−1
F

(
y(k)

)
.

(b) If b2 = 0, we get Ostrowski’s method transferred to systems (OM3)

x (k+1) = y(k)−
(
−I + 2

[
F ′(x (k)

)]−1[
x (k), y(k); F

])−1 [
F ′(x (k)

)]−1
F

(
y(k)

)
.

3. For any a1 �= 0 and b2 = 0,

G
(
x (k), y(k)

) = a1 − 1

a1
I +

[
a1(1 − 2a1)I + 2a2

1[F ′(x (k)]−1[x (k), y(k); F
]]−1

.

4. For any a1 �= 0 and b2 = 1,

x (k+1) = y(k) − 1

a1

[
(1 − a1)I + a1

[
F ′(x (k)

)]−1[x (k), y(k); F]
]−1 [

F ′(x (k)
)]−1

F
(
y(k)

)+ 1

a1

[
(2a1 − 1)I −[

F ′(x (k)
)]−1[

x (k), y(k); F
]][

F ′(x (k)
)]−1

F
(
y(k)

)
.
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4 Numerical results

In this section we show the numerical behavior of the proposed methods on some
standard equations and systems and also on an applied problem. In the tests made,
variable precision arithmetics has been used, with 4,000 digits of mantissa (in the
numerical tests for nonlinear equations) and 1,000 digits of mantissa (in the numerical
tests for systems of nonlinear equations) in MATLAB R2013a. These tests have been
made by using the stopping criterium ‖F(x (k+1))‖ < 10−700 or ‖x (k+1) − x (k)‖ <

10−700. We will also use the approximated computational order of convergence ρ

(usually called ACOC), defined by Cordero and Torregrosa in [25]

ρ = ln(‖x (k+1) − x (k)‖/‖x (k) − x (k−1)‖)
ln(‖x (k) − x (k−1)‖/‖x (k−1) − x (k−2)|) .

4.1 Academic test functions

Firstly, to check the behavior of the proposed methods with derivatives for solving
nonlinear equations, we use the following elements of the family of obtained methods:

1. MA1: a1 = 5
4 and b2 = 0

xk+1 = yk − f (xk) − 1
2 f (yk)

f (xk) − 5
2 f (yk)

f (yk)

f ′(xk)
,

2. MB1: a1 = 1 and b2 = 1

xk+1 = yk −
(

f (xk)

f (xk) − f (yk)
+ f (yk)

f (xk)

)
f (yk)

f ′(xk)
,

3. MC1: a1 = 1 and b2 = 3

xk+1 = yk −
(

f (xk)

f (xk) + f (yk)
+ 3 f (yk)

f (xk)

)
f (yk)

f ′(xk)
,

where yk is Newton’s step. In these numerical experiments, we compare MA1, MB1
and MC1 with Newton’s method (NM), Ostrowski’s method (OM) (3), Chun’s method
(CM) (4) and Jarratt’s method (JM) [24]

yk = xk − 2

3

f (xk)

f ′(xk)

xk+1 = xk − 1

2

3 f ′(xk) + f ′(yk)

3 f ′(xk) − f ′(yk)

f (xk)

f ′(xk)
.

Tables 1, 2, 3 and 4 show, for each initial estimation x0 and every method, the
approximated computational order of convergence ρ, the number of iterations, and
two measures of the error, specifically, ‖x (k+1) − x (k)‖ and ‖F(x (k+1))‖.
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Table 1 Test functions and numerical results for methods with derivatives

Method ρ Iter |xk+1 − xk | | f (xk+1)|

f1(x) = sin x − x2 + 1, x0 = 1 and ξ ≈ 1.409624004002596

NM 2.0000 10 1.867e−273 5.205e−546

JM 4.0000 5 7.315e−139 1.307e−553

OM 4.0000 6 3.774e−196 4.751e−782

CM 4.0000 5 4.093e−139 1.268e−554

MA1 4.0000 5 1.389e−178 5.588e−716

MB1 4.0000 7 2.005e−959 2.697e−2,008

MC1 4.0000 5 3.938e−090 4.497e−358

f2(x) = x2 − exp(x) − 3x + 2, x0 = 0.8 and ξ ≈ 0.257530285439861

NM 2.0000 8 4.472e−190 7.062e−380

JM 4.0000 5 1.756e−258 1.622e−1,033

OM 4.0000 5 7.970e−271 1.909e−1,083

CM 4.0000 5 3.475e−286 3.363e−1,114

MA1 4.0000 5 8.287e−257 9.502e−1,027

MB1 4.0000 6 8.005e−1065 0.0

MC1 4.0000 5 4.385e−266 2.889e−1,064

f3(x) = cos x − x , x0 = 1 and ξ ≈ 0.739085133215161

NM 2.0000 8 7.118e−167 1.872e−333

JM 4.0000 5 4.214e−296 1.350e−1,183

OM 4.0000 5 1.102e−268 1.693e−1,073

CM 4.0000 5 1.632e−299 2.793e−1,197

MA1 4.0000 5 1.594e−309 1.599e−1,237

MB1 4.0000 6 1.026e−1093 1.349e−2,008

MC1 4.0000 5 2.233e−273 2.409e−1,092

f4(x) = cos x − x exp x + x2, x0 = 0.5 and ξ ≈ 0.639154096332008

NM 2.0000 9 1.068e−243 2.168e−486

JM 4.0000 5 4.140e−293 1.019e−1,170

OM 4.0000 5 3.505e−182 7.589e−726

CM 4.0000 5 5.909e−289 4.679e−1,154

MA1 4.0000 5 3.485e−254 1.219e−1,014

MB1 4.0000 5 1.929e−770 1.349e−2,008

MC1 4.0000 5 2.034e−196 6.597e−783

At the sight of the results in Table 1, we conclude that the new methods have an
excellent behavior, giving the best error estimations in all cases.

Now, the elements of the family of derivative-free methods that we are going to use
are:
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Table 2 Test functions and numerical results for methods without derivatives

Method ρ Iter |xk+1 − xk | | f (xk+1)|

f1(x) = sin x − x2 + 1, x0 = 1 and ξ ≈ 1.409624004002596

ST 2.0000 10 3.249e−274 2.615e−547

LZM 4.0000 5 5.953e−239 5.950e−954

CT4 4.0000 5 6.200e−151 1.855e−601

OM2 4.0000 6 5.935e−277 6.793e−1,105

CM2 4.0000 5 1.012e−91 3.771e−364

MA2 4.0000 6 8.754e−246 3.492e−980

MB2 4.0000 6 2.311e−240 5.332e−959

MC2 4.0000 5 3.938e−90 4.497e−358

f2(x) = x2 − exp(x) − 3x + 2, x0 = 0.8 and ξ ≈ 0.257530285439861

ST 2.0000 9 3.979e−175 1.554e−349

LZM 4.0000 5 4.687e−163 6.775e−651

CT4 4.0000 5 1.336e−166 4.202e−665

OM2 – n.c. - -

CM2 4.0000 10 4.367e−111 1.697e−442

MA2 – n.c. - -

MB2 4.0000 5 4.436e−266 3.025e−1,064

MC2 4.0000 5 4.385e−266 2.889e−1,064

f3(x) = cos x − x , x0 = 1 and ξ ≈ 0.739085133215161

ST 2.0000 8 4.380e−178 4.776e−356

LZM 4.0000 4 1.190e−84 1.460e−338

CT4 4.0000 5 6.809e−309 4.167e−1,235

OM2 4.0000 5 2.492e−238 7.160e−952

CM2 4.0000 5 1.281e−286 3.064e−1,145

MA2 4.0000 5 1.433e−231 8.582e−925

MB2 4.0000 5 1.154e−237 1.717e−1,093

MC2 4.0000 5 2.233e−273 2.409e−1,092

f4(x) = cos x − x exp x + x2, x0 = 0.5 and ξ ≈ 0.639154096332008

ST 2.0000 9 1.412e−219 5.402e−438

LZM 4.0000 5 1.071e−256 1.266e−1,024

CT4 4.0000 5 1.242e−276 1.671e−1,104

OM2 4.0000 5 2.656e−209 4.187e−834

CM2 4.0000 5 3.987e−220 9.449e−878

MA2 4.0000 5 2.132e−207 1.980e−826

MB2 4.0000 5 3.318e−193 4.676e−770

MC2 4.0000 5 2.034e−196 6.597e−783
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Table 3 Test functions and results for nonlinear systems, F1 and F2

Method ρ Iter ‖x(k+1) − x(k)‖ ‖F(x(k+1))‖

F1(x1, x2) = (exp x1 exp x2 + x1 cos x2, x1 + x2 − 1 x(0) = (3, −2) and ξ1 ≈
3.4675009642402, ξ2 ≈ −2.4675009642402

NM 2.0000 9 1.141e−397 4.802e−795

TM 3.0000 6 2.905e−336 5.671e−1,008

JM 4.0000 5 5.597e−254 5.671e−1,008

OM3 4.0000 5 3.978e−266 5.671e−1,008

CM3 4.0000 5 9.701e−261 5.671e−1,008

MA3 4.0000 5 3.749e−268 9.301e−1,072

MB3 4.0000 5 7.966e−262 3.762e−1,046

MC3 4.0000 5 7.972e−262 3.773e−1,046

F2(x1, x2, x3, x4) = (x1x3 + x4(x2 + x3), x1x3 + x4(x1 + x3), x1x2 + x4(x1 + x2), x1x2 +
x1x3 + x2x3 − 1), x0 = (1, 1, 1, −0.5) and ξ1 = ξ2 = ξ3 = 0.5773502691896257,
ξ4 = −0.2886751345948129

NM 2.0000 11 4.407e−586 3.007e−1,008

TM 3.0000 7 3.003e−341 2.835e−1,008

JM 4.0000 6 4.407e−586 2.835e−1,008

OM3 4.0000 6 4.407e−586 2.835e−1,008

CM3 4.0000 6 9.920e−425 0.0

MA3 4.9996 5 7.717e−340 4.202e−1,697

MB3 4.0000 6 6.486e−447 1.508e−1,785

MC3 4.0000 6 1.555e−442 4.982e−1,768

1. MA2: a1 = 5
4 and b2 = 0

xk+1 = yk − f (xk) − 1
2 f (yk)

f (xk) − 5
2 f (yk)

f (yk)

f [zk, xk]

2. MB2: a1 = 1 and b2 = 1

xk+1 = yk −
(

f (xk)

f (xk) − f (yk)
+ f (yk)

f (xk)

)
f (yk)

f [zk, xk]

3. MC2: a1 = 1 and b2 = 3

xk+1 = yk −
(

f (xk)

f (xk) + f (yk)
+ 3 f (yk)

f (xk)

)
f (yk)

f [zk, xk]

where yk = xk − f (xk)

f [zk, xk] , f [zk, xk] = f (zk) − f (xk)

zk − xk
and zk = xk + f (xk)

2. In

this case, we compare our schemes with Steffensen’s method (SM) [7], LZM [26]
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Table 4 Test functions and results for nonlinear systems F3 and F4

Method ρ Iter ‖x(k+1) − x(k)‖ ‖F(x(k+1))‖

F3(x1, x2) = (x2
1 − x1 − x2

2 − 1, sinx1 + x2), x0 = (−0.15, −0.15) and ξ1 ≈
−0.8452567390376772, ξ2 ≈ −0.7481414932526368

NM 1.9995 11 3.892e−594 0.0

TM 2.9972 7 4.061e−266 6.803e−798

JM 3.9754 6 2.257e−476 5.845e−1,008

OM3 3.9874 6 8.591e−480 5.845e−1,008

CM3 3.9770 6 2.545e−240 3.598e−960

MA3 3.9831 5 6.832e−184 1.298e−734

MB3 4.0078 6 1.531e−274 2.237e−1,096

MC3 4.0097 6 3.831e−244 6.833e−974

F4(x1, x2, x3) = (x2
1 + x2

2 + x2
3 − 9, x1x2x3 − 1, x1 + x2 − x2

3 ), x0 = (2, −1.5 − 0.5) and
ξ1 ≈ 2.140258122005175 ξ2 ≈ −2.090294642255235, ξ3 ≈ −02235251210713019

NM 2.0002 11 4.822e−478 3.078e−955

TM 3.0000 8 1.534e−311 3.709e−933

JM 4.0009 6 3.163e−477 4.454e−1,007

OM3 4.0010 6 8.695e−479 2.286e−1,007

CM3 3.9996 7 2.695e−475 2.273e−1,007

MA3 3.9964 6 7.193e−566 2.696e−2,008

MB3 3.9998 7 2.890e−628 2.224e−2,007

MC3 4.0000 10 3.285e−288 1.729e−1,150

yk = xk − f (xk)
2

f (zk) − f (xk)
, zk = xk + f (xk),

xk+1 = yk − f [xk, yk] − f [yk, zk] + f [xk, zk]
f [xk, yk]2 f (yk),

and CT4 [27] (with γ = 1, a = 1, b = 1, c = 1 and d = 0)

yk = xk − γ f (xk)
2

f (zk) − f (xk)
, zk = xk + γ f (xk),

xk+1 = yk − f (yk)

a f (yk)−b f (zk )
yk−zk

+ c f (yk )−d f (xk )
yk−xk

.

From the results shown in Table 2, it can be stated that the proposed schemes are quite
competitive respect to the known ones, being best ones in some cases.

In Tables 3 and 4, we show the results obtained by using the following elements of
the family (16), for the following values of a1 and b2:

1. MA3: a1 = 5
4 and b2 = 0

2. MB3: a1 = 1 and b2 = 1
3. MC3: a1 = 1 and b2 = 3
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In these numerical experiments, we compare the extension for systems of
Ostrowski’s method (OM3) and Chun’s method (CM3), MA3, MB3 and MC3 with
Newton’s method (NM), Jarratt’s method (JM) and Traub’s method (TM):

y(k) = x (k) −
[

F ′(x (k)
)]−1

F
(

x (k)
)

x (k+1) = y(k) −
[

F ′(x (k)
)]−1

F
(

y(k)
)

.

In order to preserve the local order of convergence we use in our computations a
symmetric divided difference operator.

In general, numerical results confirm theoretical ones. The proposed methods for
systems behave better or equal to Jarratt’s scheme, that is widely used as fourth-order
method for systems. Moreover, the transferred Ostrowski’ and Chun’s methods for
solving nonlinear systems have also a good performance.

4.2 Molecular interaction problem

To solve the equation of molecular interaction, (see [28])

uxx + uyy = u2, (x, y) ∈ [0, 1] × [0, 1] (17)

u(x, 0) = 2x2 − x + 1, u(x, 1) = 2

u(0, y) = 2y2 − y + 1, u(1, y) = 2.

we need to deal with a boundary value problem with a nonlinear partial differential
equation of second order. To estimate its solution numerically, we have used cen-
tral divided differences in order to transform the problem in a nonlinear system of
equations, which is solved by using the proposed methods of order four and five.

The discretization process yields to the nonlinear system of equations,

ui+1, j −4ui, j +ui−1, j +ui, j+1+ui, j−1−h2u2
i, j = 0, i = 1, . . . , nx, j = 1, . . . , ny,

(18)

where ui, j denotes the estimation of the unknown u(xi , y j ), xi = ih with i =
0, 1, . . . , nx , y j = jk with j = 0, 1, . . . , ny, are the nodes in both variables, being
h = 1

nx , k = 1
ny and nx = ny.

In this case, we fix nx = ny = 4, so a mesh of 5 × 5 is generated. As the boundary
conditions give us the value of the unknown function at the nodes (x0, y j ), (x4, y j )

for all j and also at (xi , y0), (xi , y4) for all i , we have only nine unknowns, that are
renamed as:

x1 = u1,1, x2 = u2,1, x3 = u3,1, x4 = u1,2,

x5 = u2,2, x6 = u3,2, x7 = u1,3, x8 = u2,3, x9 = u3,3.

So, the system can be expressed as

F(x) = Ax + φ(x) − b = 0,

123



J Math Chem (2015) 53:430–449 447

Table 5 Numerical results for molecular interaction problem

x(0) = (1, . . . , 1)T

Method ρ Iter ‖x(k+1) − x(k)‖ ‖F(x(k+1))‖
NM 1.9999 9 1.482e−413 6.448e−828

TM 2.9988 6 1.153e−355 2.545e−1,007

JM 3.9954 5 1.482e−413 1.976e−1,007

OM3 3.9964 5 1.482e−413 1.618e−1,007

CM3 3.9959 5 1.998e−353 1.618e−1,007

MA3 4.0519 5 5.362e−510 1.707e−2,007

MB3 3.9960 5 7.123e−362 1.049e−1,449

MC3 3.9960 5 3.110e−362 3.811e−1,451

where

A =
⎛
⎝ M −I 0

−I M −I
0 −I M

⎞
⎠ ,

being M =
⎛
⎝ 4 −1 0

−1 4 −1
0 −1 4

⎞
⎠ , φ(x) = h2(x2

1 , x2
2 , . . . , x2

9 )T ,

I is the 3 × 3 identity matrix and b = ( 7
4 , 1, 27

8 , 1, 0, 2, 27
8 , 2, 4

)T
. In this case,

F ′(x) = A + 2h2diag(x1, x2, . . . , x9).
Now, we will check the performance of the methods by means of some numerical

tests, by using variable precision arithmetics of 1,000 digits of mantissa. These tests
have been made by using the stopping criterium ‖F(x (k+1))‖ < 10−700 or ‖x (k+1) −
x (k)‖ < 10−700. In Table 5 , we show the numerical results obtained for the problem
of molecular interaction (18). We show, the approximated computational order of
convergence, the number of iterations, the difference between the two last iterations
and the residual of the function at the last iteration.

In Table 5 we can observe that all the new methods converge to the solution of the
problem, that appears in Table 6. It can be noticed that the lowest error of the test
corresponds to method MA3, duplicating the number of exact digits respect the other
ones.

5 Concluding remarks

We have presented two family of iterative methods for solving nonlinear equations
with and without derivatives, respectively. In addition, by using the first family we
obtain a class of iterative methods for finding the solution of nonlinear systems.

The numerical results obtained in Sect. 4 confirm the theoretical results. Summa-
rizing, we can conclude that the novel iterative methods have a good performance for
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Table 6 Approximated solution
ξ

u1,1 1.0259117…

u2,1 1.2097139…

u3,1 1.5167030…

u1,2 1.2097139…

u2,2 1.3877038…

u3,2 1.6258725…

u1,3 1.5167030…

u2,3 1.6258725…

u3,3 1.7642995…

solving nonlinear equations and systems. In the applied example, the new methods
show good stability and precision in the results.
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